
Nonstandard Dynamic
Programming

Junhua Chen 11/12/2021

Table Of Contents

SECTION I: Range DP

(1) What is it and what’s hard about it

(2) The extremal idea for designing recursions

(3) Two problems: Polygon Game, Array Deletion

Section II: Exponential / Bitmask DP

(1) Basic bitmask DP via problem Oddjobs

(2) Basic Frontier DP via problem Wet Towels

(3) Meet in the middle via problem XOR path

Section III: Lexicographic DP

(1) Toy problem: permutation

(2) Turning it into counting problem

(3) Getting k-th element

Abstract:

Most DP questions involve

linear states. Today we shall

cover DP techniques and

ideas that are not

particularly well known but

are applicable to many

problems, or in particular,

subtasks of problems.

SECTION I: Range DP

(1) What is it and what’s hard about it

(2) The extremal idea for designing recursions

(3) Two problems: Polygon Game, Array Deletion

Section II: Exponential / Bitmask DP

(1) Basic bitmask DP via problem Oddjobs

(2) Basic Frontier DP via problem Wet Towels

(3) Meet in the middle via problem XOR path

Section III: Lexicographic DP

(1) Toy problem: permutation

(2) Turning it into counting problem

(3) Getting k-th element

Range DP

• Common problems you’ve often seen:

• Here’s an array of numbers, here’s an operation, maximise score

• Here’s a bunch of things superimposed over an array, operation, max score

• Range DP often offers solutions to these problems

• The idea is simple: maintain what the answer is in each subarray
• i.e 𝑑𝑝 𝑙 𝑟 = 𝑏𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 𝑢𝑠𝑖𝑛𝑔 𝐴𝑙 …𝐴𝑟
• Generally, the state is easy (but people often forget about range dp) but the recursion is hard

• Often easy to get recursion wrong outright, must be careful

• 𝑁 ≤ 300 is often a dead giveaway

The extremal principle

• Common idea used in many problems, but especially range dp

• Basically the general idea is that in a set of things there must be one
with some special property
• E.g 1: In every subarray there is a biggest element

• E.g 2: If you sequentially erase every element of a subarray there must be
one that is deleted last

• How this idea is used is best seen by example

• Use this to help split your problem into independent subproblems

Example problem 1: Polygon Game

• TL DR: Given polygon with vertex weights triangulate it to maximise
sum of products of edges which are connected

• Aim for O(𝑁3), lets think for two minutes.

• Any ideas? Why might we be motivated to think about range dp?

Solution

• 𝑑𝑝 𝑙 𝑟 = 𝐵𝑒𝑠𝑡 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑈𝑠𝑖𝑛𝑔 𝑆𝑢𝑏𝑝𝑜𝑙𝑦𝑔𝑜𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑙 … 𝑟

• 𝑑𝑝 𝑖 𝑗 = 0, 𝑖 − 𝑗 ≤ 1

• Our extremal idea is that in any triangulation the edge connecting
vertices 𝑙, 𝑟 must be part of some triangle

vertex l

vertex r

Solution (cont’d)

• We got our extremal observation now and we’ll use it

• It is easy to enumerate the possibilities for the triangle by
enumerating all possible choices for the 3rd vertex 𝑖
• 𝑑𝑝 𝑙 𝑟 = max

𝑙<𝑖<𝑟
𝑑𝑝 𝑙 𝑖 + 𝑑𝑝 𝑖 𝑟 + 𝑉 𝑙 + 𝑉 𝑟 × 𝑉[𝑖])

• That’s it! We just considered a very simple extremal property (what is vertex
l doing and basically recursion falls out)

• Lets look at some code!

Fun observation because I like maths
(optional, read yourself)

Observation: Every triangulation of a polygon contains an “short
edge” i.e joining 𝑣𝑘 ↔ 𝑣𝑘+2 for some 𝑘

Proof: Holds for n=5 There are 𝑛 − 2 triangles in any triangulation
and 𝑛 sides so it must be case that there exist two pairs of sides
belonging in same triangle in triangulation by pigeonhole principle.
Those two sides must be adjacent. This gives us two short edges as
clearly we can’t have 3 sides in a triangle for 𝑛 ≠ 3 Q.E.D

Exercise: Devise a different proof by considering graph created by the
triangle’s adjacency

Problem 2: Delete

Statement:

You have array 𝐴 1 …𝐴[2𝑁] and the operation of deleting two
adjacent elements of the array. You would be deleting every element of
the array and your score is the sum of the products of the pairs of
elements you delete.

e.g For the sequence of deletions 1 2 3 4 -> 1 4 -> ∅ you score
6+4=10

Maximise your score (𝑁 ≤ 80)

Solution

• Once again state is what you’d expect: 𝑑𝑝 𝑙 𝑟 = 𝑎𝑛𝑠 𝑓𝑜𝑟 𝐴[𝑙 … 𝑟]
and of course 𝑑𝑝 𝑖 𝑖 + 𝑒𝑣𝑒𝑛 = −∞, 𝑑𝑝 𝑖 𝑖 − 1 = 0

• Extremal observation: In every set of deletions one of the deletions
happens last (e.g in previous example 1 4 is deleted last)
• Idea: Choose elements in range which are deleted last, they split the range

into independent subproblems

• Thus we get 𝑑𝑝 𝑙 𝑟 = max
𝑙≤𝑖<𝑗≤𝑟

𝑑𝑝 𝑙 𝑖 − 1 + 𝑑𝑝 𝑖 + 1 𝑗 − 1 + 𝑑𝑝[

]

𝑗 +

1 𝑟 + 𝐴 𝑖 𝐴[𝑗] for easy 𝑂(𝑁4)

• Implementation is easy

• Notice the way I enumerate the states in the two outer for loops. At
least I feel like its quite a nice way to do range dp

General sanity checks for the recursion

• Will optimal answers always be considered?

• Are the subproblems created independent?

• Are all possibilities considered by DP legal?

• These are all important considerations to thinking why a recursion
might be correct or incorrect

SECTION I: Range DP

(1) What is it and what’s hard about it

(2) The extremal idea for designing recursions

(3) Two problems: Polygon Game, Array Deletion

Section II: Exponential / Bitmask DP

(1) Basic bitmask DP via problem Oddjobs

(2) Basic Frontier DP via problem Wet Towels

(3) Meet in the middle via problem XOR path

Section III: Lexicographic DP

(1) Toy problem: permutation

(2) Turning it into counting problem

(3) Getting k-th element

Basic bitmask DP

• Maintaining DP where one of the states is subsets of a set can help
tackle many standard NP-hard problems

• Great for solving subtasks even if it can’t solve the entire problem

• Straw Poll: Have we all done bitmask DP before?

Oddjobs (basic bitmask DP)

• TL DR Arrange 𝑁 ≤ 15 people to 𝑁 jobs such that each person does
a different job and the total cost of work σ𝑖=1

𝑁 𝐶𝑜𝑠𝑡(𝑥, 𝑗𝑜𝑏 𝑥) is
minimised (cost matrix given)

• While the Hungarian method solves this in a blazingly fast 𝑂(𝑁3)
we’ll stick with a simpler dynamic programming approach

• 𝑑𝑝[𝑆 ⊂ 1 …𝑁] is the minimum cost to assign persons 1 … |𝑆| to
jobs in S. Recursion is to assign person |𝑆| to 1 of the jobs.

• Subsets are maintained as bitmasks

Implementation

Bit hacking Cheatsheet for your convinience

http://orac.amt.edu.au/notes/Binary.pdf

Here are also some fancier operations which are really only useful if
you want absolute speed except for the first one.

Exercise: Implement ctz from the other operations

Fancy Operation What it does Example

x&(-x) (from fenwick) Least significant bit value 12&(-12)=4

__builtin_popcount

__builtin_popcountll

Counts number of 1 bits in

integer (for 32,64 bit)

__builtin_popcount(12)=2

__builtin_ctz

__builtin_ctzll

Counts number of trailing

zeros in integer

__builtin_ctz(16)=4

http://orac.amt.edu.au/notes/Binary.pdf

Basic frontier DP

• Problems where the dp state is the “complete” information about the
current part of solution being constructed

• We illustrate this through problem Wet Towels
(https://orac2.info/problem/seln07towels/) (TL DR tile a weighted
7 × 𝑁 grid with dominos such that the sum of the domino’s weight
differences are minimised)

• The difficulty is often in implementation: The recursion (we call
them state transitions here) are often very complex and it is one of
the programmer’s main tasks to characterize them efficiently

https://orac2.info/problem/seln07towels/

Solution and implementation tricks

• Clearly we should progressively tile the grid along the long axis,
keeping the complete profile of the length 7 axis. So lets define our
state as:
• 𝑑𝑝 𝑠𝑡𝑎𝑡𝑒 ⊂ {1 …7} 𝑖 = best cost to tile subgrid (state, i) where:

• Columns 𝑖 + 1 …𝑁 is completely untiled

• Columns 1 … 𝑖 − 1 is completely tiled

• Square (𝑥, 𝑖) is tiled iff 𝑥 ∈ 𝑠𝑡𝑎𝑡𝑒

Aside: We can solve this question by Hungarian algorithm too by reducing to min weight matching

𝑖 maintains long direction

The state transition

• Lets say there’s 7 rows and N columns. At the state we can
characterise transitions as either

(1) Placing a vertical domino in column 𝑖

(2) Placing a horizontal domino in 𝑥, 𝑖 , (𝑥 + 1, 𝑖) for all 𝑖 ∈ 𝑠𝑡𝑎𝑡𝑒

Meet in the middle

• It is a technique for optimising brute force approaches

• The main idea is to split an brute force of size 𝑁 into two brute

forces of size
𝑁

2
which are combined by a semi-bruteforce merge

• The complexity would thus go from say 𝑂 2𝑁 to 𝑂(2
𝑁

2𝑓(𝑛)) where
merging one element takes 𝑓(𝑛)

• You can think of it as a halfway house between D&C and sqrt
decomp, in that your splitting in half but the recursion is only one
layer deep

• Thus if you can merge answers quickly it can be viable approach. It
is especially good for counting

Example problem: XOR paths (codeforces)

• https://codeforces.com/contest/1006/problem/F

• One minute to think

https://codeforces.com/contest/1006/problem/F

Useful combinatorial Arguments & estimates
(1) The number of down-right paths from (0,0) to (N,M) is

𝑵+𝑴
𝑴

Proof: The paths contain N down operations and M right operations. Thus for each binary string of length N+M with M

“0”s there is a unique path. So there are
𝑁+𝑀
𝑀

paths

(2) The number of down-right paths from (0,0) to 𝒙 + 𝒚 = 𝒂 is 𝟐𝒂

Proof: Argued in same way as (1)

(3)
𝟐𝑵
𝑵

≈
𝟒𝑵

𝝅𝑵

Proof: by Stirling’s approximation 𝑛! = (1 + 𝑂
1

𝑛
)

𝑛

𝑒

𝑛
2𝜋𝑛 where as 𝑛 → ∞

(4) The number of ways to write 𝒏 as the ordered sum of 𝒌 nonnegative integers is
𝒏+𝒌−𝟏

𝒌

Proof: Choose k separators among n+k-1 things (we won’t use it here but useful to know)

(5) The number of balanced bracket sequences of length 𝟐𝒏 is
𝟏

𝒏+𝟏

𝟐𝒏
𝒏

(called Catalan number)

Proof: Setup recursion of form: either split the sequence into two balanced sequences or take out first and last brackets to

form another balanced bracket sequences and apply induction (we won’t use it here but useful to know)

The brute force and how to improve it

• Lets just take 𝑁 = 𝑀 = 20 here because why not

• We can of course check all
40
20

≈ 1.4 × 1011 paths but I don’t think

C++ runs that fast. So lets use meet in middle

• Generating all paths up to the long diagonal, however, is feasible as
there's 220 of them.

Split paths into upper and lower half

• See: meet in middle!
Animation:

https://www.youtube.com/watch

?v=xvFZjo5PgG0

Solution outline

GENERATE ALL TOP PATHS //𝑂(2𝑁)

FOR EACH BOTTOM PATH //2𝑁 to loop through

COUNT HOW MANY TOP PATHS ENDING WHERE IT STARTS THAT XOR WITH

IT TO K //𝑂 𝑙𝑜𝑔 2𝑁 = 𝑂(𝑁) by map. This is our merge step

So complexity is 𝑂(2𝑁𝑁) as opposed to bruteforce time of 𝑂(
4𝑁

𝑁
).

Implementation: A few things to watch

• https://codeforces.com/contest/1006/submission/138309869

• How I only store the upper paths but not the lower one: cuts memory
in half (often meet in the middle has tight memory and time limits)

• Tr1::unordered_map is very fast and shaves a fair bit of time off

• Edge cases must be covered

Reading Material for Problem Superheros

Try to solve the problem yourself. However, if you get stuck for more
than an hour, read the editorial (Q3 only):

https://drive.google.com/file/d/1pMdKOgGVARDXy3rCW6VT_kL-
tHO1lGFV/view?usp=sharing

For implementation, we introduce the following trick for enumerating
nonempty subsets of a bitmask n:

for (int i=n; i>0; i=(i-1)&n) {

// i is a subset

}

https://drive.google.com/file/d/1pMdKOgGVARDXy3rCW6VT_kL-tHO1lGFV/view?usp=sharing

SECTION I: Range DP

(1) What is it and what’s hard about it

(2) The extremal idea for designing recursions

(3) Two problems: Polygon Game, Array Deletion

Section II: Exponential / Bitmask DP

(1) Basic bitmask DP via problem Oddjobs

(2) Basic Frontier DP via problem Wet Towels

(3) Meet in the middle via problem XOR path

Section III: Lexicographic DP

(1) Toy problem: permutation

(2) Turning it into counting problem

(3) Getting k-th element

What Lexicographic DP problems look like

• Type 1: Given a sequence with certain properties compute its
lexicographic order among all sequences with such property

• Type 2: Find the kth lexicographically least such sequence

In interests of time we will just examine one of the simplest such
questions, where sequences is “Permutations”

Problem: Cryptography

• Given a permutation 𝑃1…𝑁 find its lexicographical order mod 109 + 7

• Definition of lexicographic order: 𝑃 ≤𝑙𝑒𝑥 𝑄 iff exist index k that P
and Q are same before index k and 𝑄𝑘 > 𝑃𝑘

• Wishful thinking: What if we had an oracle that can tell us how many
permutations start with certain prefix. Call it 𝑓(𝑃1, … 𝑃𝑘)

• Then the number of permutations lexicographically less than 𝑃 is

n 𝑃 = σ𝑘=1
𝑛 σ

𝑗=1
𝑃𝑘−1 𝑓(𝑃1, … 𝑃𝑘−1, 𝑗) = σ𝑘=1

𝑛 #𝑠𝑒𝑞𝑠 𝑑𝑖𝑣𝑒𝑟𝑔𝑖𝑛𝑔 𝑎𝑡 𝑘

• So lexicographic order is 𝑛 𝑃 + 1

Now what?

• The method we explained is very general and is usable on all
problems of this class

• The trick to most lexicographic problems is constructing the function
𝑓, usually by encoding a prefix as a ‘local’ condition in a dp

• In our case 𝑓 𝑥1 …𝑥𝑘 = 𝑛 − 𝑘 ! (for 𝑥1…𝑘 distinct and 0 else)
which is a godsend, and thus gives us a way of getting 𝑛(𝑃) in
𝑂(𝑁2) time

• This is optimised down to 𝑂 𝑁𝑙𝑜𝑔𝑁 by your favourite range sum

point add data structure to get σ𝑗=1
𝑃𝑘−1 𝑓(𝑃1, … 𝑃𝑘−1, 𝑗) quickly

Implementation: Quite Easy

• https://oj.uz/submission/492562

• Care must be taken to ensure 𝑂(𝑁𝑙𝑜𝑔𝑁) running time!

https://oj.uz/submission/492562

Exercise (1 minute)

• The same problem but for balanced bracket sequences

• How do we get 𝑓(𝑥1 …𝑥𝑘)?

• Counting problem!

Answer

• 𝑑𝑝 𝑖 𝑗 = #𝑙𝑒𝑛𝑔𝑡ℎ 𝑖 + 𝑗 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑗 ′(′𝑠

Second half of problem: Getting kth element

• I like to call the technique ‘walking the dp’

• Suppose a cat came around and gave us 𝑋1 …𝑋𝑘. Lets try find 𝑋𝑘+1
• Suppose that like before we had 𝑓(𝑥1, … , 𝑥𝑘) like before

The algorithm pseudocode: We find One
element at time
X := ∅
K := target_order – 1 //# sequences ≤𝑙𝑒𝑥 𝑋
For i = 1 … N

// Find 𝑋𝑖
For j = 1 … |Σ| //candidates for 𝑋𝑘 in order

if K ≥ 𝑓(𝑋1…𝑋𝑖−1, 𝑗):
𝐾 ≔ 𝐾 − 𝑓(𝑋1…𝑋𝑖−1, 𝑗)

else

𝑋𝑖 ≔ 𝑗
break

Implementation: kth permutation
• Disclaimer: This code has been tested on n = 1 … 5 only

Problemset

Here * Denotes increased difficulty and italics denote essential
problems

Section I Section II Section III

Polygon game (template

provided)

Oddjobs (template provided) Cryptography (template

provided) [oj.uz NOI20 Crypt]

Outer Space invaders Wet Towels (template provided) Linear garden [oj.uz]

USACO 2019 December

Platnium Q1* [USACO]

Superheros Calvinball championship

[oj.uz]

Mountain (IOI17 prac)**

[oj.uz]

Ice Hockey World championships

[oj.uz]

twofive **

Bus tour * Magical Stones ***

Fun park (CEOI 2019)** [oj.uz]

Thank you for your attention!!!

