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The red tape

• Legally obliged to encourage you to get tested if you feel iffy



Table of contents

• Part I: Divide and conquer ideas:

-Mergesort: an refresher

-Answering range queries: range knapsack

-Parallel binary search

-Divide and conquer dp

Aim: examine common D and C design ideas



Divide and conquer

• Main idea is to split a problem up into smaller and pieces of similar 
nature, and use work done on smaller pieces to piece together a 
solution to the bigger problem

• By its own virtue, splitting a problem up into smaller pieces also 
reduces unnecessary computation as will be seen soon



Mergesort: the original divide and conquer

Do we all know this?



Working space



Before we go any deeper: The maths

• Invariants and complexity analysis (often through recursions) are 
essential to understanding divide and conquer

• We introduce the Master theorem which helps use analyse divide and 
conquer algorithms



Master theorem for D & C complexities
• Basically just remember this:

a b k comments

1 2 0 Binary search

2 2 1 O(NlogN), basically every 
divide and conquer you’ll 
ever do (mergesort)

2 ≥ 4 1 gg

Useful note: if there are log factors 
attached to the 𝑛𝑘 term, ignore 
them and at the end multiply T(n) 
by these log factors



Explainer

• Mergesort:

𝑇 𝑁 = 2𝑇
𝑁

2
+ 𝑂(𝑁) -> T(N) is complexity for mergesort on 

an array of size N

Explain why this recursion is so?



Problem 1: Smaller problem = lighter work

• You have N items 1 … N, each one with weight and value

• Answer offline queries of form: Given a knapsack capacity ci and a 
range li,ri, find the answer to the 0-1 knapsack problem using items li 
… ri.

• TL DR: range knapsack query

• Let maximum capacity and weight be C.

• Try to find a 𝑂(𝐶𝑁𝑙𝑜𝑔𝑁 + 𝑄𝐶) algorithm (3 minutes thought)



Approach 1: segtree of knapsack dp tables

• Let each ST node store a dp table with the maximum values for each 
query capacity in a range.



Approach 2: D & C

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Query 2

Query 1

Lets recursively split the items in the middle (like above)

Eventually, any query range will be cut in half (in above case query 1 is split)

Consider the following D & C: slv(l,r, Q): Q is the set of queries contained wholly in [l,r]. Thus slv(1, N, all the 
queries) solves all the queries (yay!)

Solution on next page



Solution outline



Analysis of D and C and why it works

• A common way to analyse divide and conquer is to use recursion. In 
this case let 𝑇 𝑁 = 𝑐𝑜𝑠𝑡 𝑡𝑜 𝑐𝑎𝑙𝑙 𝑠𝑙𝑣 𝑜𝑛 𝑎 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑁

• 𝑇 𝑁 = 2𝑇
𝑁

2
+ 𝑂(𝐶𝑁) (two equal sized subproblems recursed on)

• Regarding queries: Think about recursion tree for the D & C. it is a 
shallow complete binary tree. Each query moves down the tree in one 
path, taking 𝑂 𝑙𝑜𝑔𝑁 time per query to move to its split point. 
Meanwhile to solve each query at the split point takes 𝑂(𝐶).

• Now back to  recursion: do maffs



Queries visualised

Split here



The recursion

• In our case we have the classic case (C is constant multiplier as it is 
independent of N) so we get 𝑇 𝑁 = 𝑂 𝐶𝑁𝑙𝑜𝑔𝑁

• Combined together gives complexity 𝑂 𝐶𝑁𝑙𝑜𝑔𝑁 + 𝑄𝐶

• Key takeaways: recursion complexity analysis, use invariant thinking



CDQ: D and C makes things easier

Consider the following problem:
N by N grid (𝑁 ≤ 106)
update: add x to a rectangular range
query: what is value of a cell? (offline) (Q operaions total)

Lets examine how D and C is a potent approach to offline solve a dynamic 
data structure task

Offline = operation sequence known in advance
Static = no update operations. Antonym is dynamic
This technique is known as CDQ after its populariser (and maybe inventor?)



Familiar with CDQ? Try this exercise instead

• JOI 2020 Spring Camp: Sweeping

• Feel free to discuss the solution with me in your spare time



A closer look at this problem

• Offline (as in problem)

• Dynamic (there are updates, so its not static)

• Standard approaches (involving 2D segment tree) are slow and 
painful to code.

• We should reduce the dimensionality of the problem



Okay – So 2d segtrees are a pain

• Source: everyone who’s ever coded one

• D and C offers a way to circumvent this

• Key idea: visualise set of operations as a timeline 

• For Instance:

• Anything that looks like an array is an array – Confucius

• So lets do D and C on this timeline!

U Q U U Q Q U Q Q Q



The D and C



CDQ as preordering a segment tree built on 
timeline– Lets draw it out! 



Filling in details: Example of affecting queries

The circles are 
queries and 
rectangles are 
updates. Here, the 
green update only 
effects 1 query 
whereas the orange 
one affects 2



What has the problem become?

• How do we sweepline and segtree to apply the updates [ l … mid] to 
queries [mid+1 … r]? 

• Note that now the problem is static, all updates applied before 
queries. 

• Maintain segtree on y axis and sweep: at a point in time, it represents 
its cells represent the values of the grid column cut by sweepline

-hit left edge of update: range add onto segtree

-hit right edge of update: range decrement onto segtree

-arrive at query: access segtree cell



Complexity of CDQ

• 𝑇 𝑄 = 2𝑇
𝑄

2
+ 𝑂 𝑄𝑙𝑜𝑔𝑁 → 𝑇 𝑁 = 𝑂(𝑄𝑙𝑜𝑔𝑁𝑙𝑜𝑔𝑄) using 

master theorem

• Faster than segtree

• While not applicable here, mergesort is often combined with CDQ 

The mentality of seeing D and C as  traversing a segment tree can also 
come useful in many places, but alas we don’t not have time for all 
these applications



The Core power of CDQ

• CDQ: shaves operations off a DS, eventually turning a dynamic into a 
static problem (can be nested) 

• Done by converting problem into such that all updates are made 
before any queries

• Exercise: maintain fully dynamic CHT (i.e with deletions as well as 
insertations of line) (offline)



Divide and conquer DP: a motivator

• Suppose there is a N by N grid of unknown integers. For all columns i
you IF x,y are such that: (x,i) and (y,i+1) are positions with maximum 
value in their column THEN 𝑥 ≤ 𝑦.

• Find the maximum values on each grid by making 𝑂 𝑁𝑙𝑜𝑔𝑁 queries 
of form: What is the value at a position in the grid? (2 minutes)

5 1 1

1 5 2

2 2 5



Solution

Observations:

-Let the maximum value of column i be 𝑜𝑝𝑡 𝑖

-Then 𝑜𝑝𝑡 𝑖 ≤ 𝑜𝑝𝑡(𝑖 + 1) is given. So monotonicity!!!

-How do we use this to prune our search?



A solution

int lo = 0; //lowest point that might be optimal

For i = 1 … N DO

max[i] = find best in lo … N

lo = lowest value that is maximum 

//Does this work? Why or why not?



Attempt 2: Lets use D and C



Correctness

• Is every potentially optimal location evaluated? (check tiebreaking)

• Is it fast? 

• Hint: Yes, but we will prove it in a bit



D and C dp

• Lets consider it visually: Different colours represent a different 
recursion call (also different layers)

• Recursion is log levels deep and at each level each row position is 
evaluated once or twice so geometrically complexity is NlogN

Layer 1

Layer 2

Layer 3

Layer 4 Insert 8 colours here I cant be stuffed



How do we use this in other problems?

• See monotonicity? This

• Can use to optimise dp recursions (especially 2D dp) 

• Might not want to prove the monotone property (its usually a pain) 
but guessing + writing D and C doesn’t take much time (low risk)

• Mentality behind it (of avoiding doing necessary evaluations you 
know will be suboptimal or degenerate) is often a key element to a 
problem



Parallel binary search

• Interesting and very elegant technique coming in more useful than 
you think making use of the previous diagram

• Basically run lots of binary searches at the same time

• Example problem: https://codeforces.com/contest/484/problem/E

• 5 minutes read and think

https://codeforces.com/contest/484/problem/E


What do we do?

• For a single query consider the following solution (bsearch):

• What if we can run binary searches for all queries at the same time 
and avoid scanning the array multiple times? 

Int lo = 0, hi = MAX

While lo + 1 != hi DO

mid = (lo + hi) / 2

check if there is a run of W fence posts 

with height at least mid in [l,r] //O(N)

if so DO

lo = mid

else

hi = mid – 1

Answer lo



Problem left as exercise

• Based on our discussion, try to write a D & C invariant that works

• The solution will be discussed afterwards

• Hint: Preorder traverse a segment tree!



Summary

• Things we looked at today:

-CDQ

-Divide and conquer DP

-D and C as traversing a segment tree

-applications to offline query problems

-parallel binary search: exercise, solution will be given later

-the power of invariants in designing these approaches

• Tackle problemset after working on this



Solving parallel bsearch



The ideas

• A useful approach in data structure problems is wishful thinking

-So what if we have a black box (BB) that can do:

-Given array, positions are on and off (BB.on(x))

-operations: turn position on and off (BB.off(x))

-query longest run of on positions in a range (BB.ask(l,r))

-in O(logN)

• We will solve this issue later



The D and C



Discussion

• Argue the correctness of the algorithm

• Argue that the algorithm runs in 𝑂(𝑁𝑙𝑜𝑔2𝑁)

• What ideas of D and C we saw earlier are present in this solution?

-segment tree inorder traversal

-queries making their way down the call tree

• Exercise: find a way to implement black box Hint: Consider the 
segment tree lecture in Data structures I



Problemset

• Extension problem: IOI 2014 Holiday

Priority Problem

1 Counting Inversions (basic D and C) and 
implementing the CF problem

2 Battleship II: Electric boogaloo

3 mobile phone

4 Meteor

5 Arranging heaps



Thank you for your attention!

• Further reading:
• Centroid decomp: divide and conquer on tree

• CP-algorithms: offline dynamic graph connectivity

• Codeforces pages

• D and C has numerous applications in interactives


