Divide and conquer
methodology and applications
to data structure problems

Junhua Chen 14/12/2020

The red tape

* Legally obliged to encourage you to get tested if you feel iffy

Table of contents

* Part |: Divide and conquer ideas:
-Mergesort: an refresher
-Answering range queries: range knapsack
-Parallel binary search
-Divide and conquer dp

Aim: examine common D and C design ideas

Divide and conquer

* Main idea is to split a problem up into smaller and pieces of similar
nature, and use work done on smaller pieces to piece together a
solution to the bigger problem

* By its own virtue, splitting a problem up into smaller pieces also
reduces unnecessary computation as will be seen soon

Mergesort: the original divide and conquer

Do we all know this?

HigEan

VL 57
1/(5]|3 4|l 2]l6
b 7
OE F @ EE
UL |
1] |5 3 4 2 6
7 e
I8 B @ @
W S
1|[3]]s 2| 4]|6

| O
L2][22][5]Le]

Working space

Before we go any deeper: The maths

* Invariants and complexity analysis (often through recursions) are
essential to understanding divide and conquer

* We introduce the Master theorem which helps use analyse divide and
conquer algorithms

Master theorem for D & C complexities

e Basically just remember this:

Binary search

2 2 1 O(NlogN), basically every
divide and congquer you’ll
ever do (mergesort)

Combining the three cases above gives us the following “master theorem”.

Useful note: if there are log factors
attached to the n* term, ignore
them and at the end multiply T(n)
by these log factors

Theorem 1 The recurrence

T(n) = aT(n/b)+
T(l) = e,

where a. b. ¢, and k are all constants. solves to:
T(n) € O(n*) ifa<b*
T(n) € O(n*logn) ifa=b*
T(n) € O(n'"%2) ifa > b*

Explainer

* Mergesort:

T(N) = 2T (%) + O(N) -> T(N) is complexity for mergesort on
an array of size N
Explain why this recursion is so?

Problem 1: Smaller problem = lighter work

* You have N items 1 ... N, each one with weight and value

* Answer offline queries of form: Given a knapsack capacity ci and a
range li,ri, find the answer to the 0-1 knapsack problem using items i
.. Il

* TL DR: range knapsack query
* Let maximum capacity and weight be C.
* Trytofinda O(CNlogN + QC) algorithm (3 minutes thought)

Approach 1: segtree of knapsack dp tables

* Let each ST node store a dp table with the maximum values for each
guery capacity in a range.

Approach 2: D & C

‘ Query 1

I S L T S - R -

< [
< »

Query 2

Lets recursively split the items in the middle (like above)
Eventually, any query range will be cut in half (in above case query 1 is split)

Consider the following D & C: slv(l,r, Q): Q is the set of queries contained wholly in [l,r]. Thus slv(1, N, all the
queries) solves all the queries (yay!)

Solution on next page

Solution outline

[wvoid slv(int 1, int r, queryset Q) {

if 1 == r or Q empty
LMAO TRIVIAL
return

ENDIF

int mid = (1 + r) / 2;

COMPUTE bestl[i] []] AND bestZ2[i][]j] where
bestl1[i][j] is the best value obtained FOR capacity
J AND items 1 ... mid AND best? is similarly defined
FOR mid+1 ... i

for each query g in Q split by mid DO
for i in range 0 ... g.cap DO
g.ans = max(g.ans, bestl[qg.l][i] + best2[qg.r][g.cap-1i])

divide remaining queries into gleft and gright
slv(l, mid, gleft)
slv(mid+1, r, gright)

Analysis of D and C and why it works

* A common way to analyse divide and conquer is to use recursion. In
this case let T(N) = cost to call slv on a range of size N

e T(N) = 2T (g) + O(CN) (two equal sized subproblems recursed on)

* Regarding queries: Think about recursion tree for the D & C. it is a
shallow complete binary tree. Each query moves down the tree in one
path, taking O(logN) time per query to move to its split point.
Meanwhile to solve each query at the split point takes O(C).

* Now back to recursion: do maffs

Queries visualised

(D,
5 >O
ofRolNoGRORE
ATl TeRoR

nlagn

Split here

The recursion

* In our case we have the classic case (C is constant multiplier as it is
independent of N) sowe get T(N) = O(CNlogN)

* Combined together gives complexity O(CNlogN + QC)
* Key takeaways: recursion complexity analysis, use invariant thinking

CDQ: D and C makes things easier

Consider the following problem:
N by N grid (N < 10°)
update: add x to a rectangular range
query: what is value of a cell? (offline) (Q operaions total)

Lets examine how D and Cis a potent approach to offline solve a dynamic
data structure task

Offline = operation sequence known in advance
Static = no update operations. Antonym is dynamic
This technique is known as CDQ_after its populariser (and maybe inventor?)

Familiar with CDQ? Try this exercise instead

* JOI 2020 Spring Camp: Sweeping
* Feel free to discuss the solution with me in your spare time

A closer look at this problem

 Offline (as in problem)
* Dynamic (there are updates, so its not static)

 Standard approaches (involving 2D segment tree) are slow and
painful to code.

* We should reduce the dimensionality of the problem

Okay — So 2d segtrees are a pain

e Source: everyone who's ever coded one

* D and C offers a way to circumvent this

* Key idea: visualise set of operations as a timeline
* For Instance:

U Q U U Q Q U Q Q

* Anything that looks like an array is an array — Confucius
* So lets do D and C on this timeline!

The D and C

void CDQ(int 1, int r) {

if 1 ==
return

CDQ (1, mid)
CDQ (mid+1, r)
int mid = (1 + r) / 2;:

let S = updates in 1 ... mid, T = queries in mid+1 ... v
maintain sweepline and segtree to see effect

CDQ as preordering a segment tree built on
timeline— Lets draw it out!

CMA[4:6]

P
, QD

Segment Tree

Filling in details: Example of affecting queries

What has the problem become?

* How do we sweepline and segtree to apply the updates [| ... mid] to
gueries [mid+1 ... r]?

* Note that now the problem is static, all updates applied before
gueries.

* Maintain segtree on y axis and sweep: at a point in time, it represents
its cells represent the values of the grid column cut by sweepline

-hit left edge of update: range add onto segtree
-hit right edge of update: range decrement onto segtree
-arrive at query: access segtree cell

Complexity of CDQ

e T(Q) = 2T (g) + 0(QlogN) - T(N) = 0(QlogNlogQ) using
master theorem

* Faster than segtree
* While not applicable here, mergesort is often combined with CDQ

The mentality of seeing D and C as traversing a segment tree can also
come useful in many places, but alas we don’t not have time for all

these applications

The Core power of CDQ

* CDQ: shaves operations off a DS, eventually turning a dynamic into a
static problem (can be nested)

* Done by converting problem into such that all updates are made
before any queries

* Exercise: maintain fully dynamic CHT (i.e with deletions as well as
insertations of line) (offline)

Divide and conquer DP: a motivator

5 |1 |1

1 (5 |2

2 |2 |5

e Suppose thereis a N by N grid of unknown integers. For all columns i
you IF x,y are such that: (x,i) and (y,i+1) are positions with maximum
value in their column THEN x < .

* Find the maximum values on each grid by making O(NlogN) queries
of form: What is the value at a position in the grid? (2 minutes)

Solution

Observations:

-Let the maximum value of column i be opt(i)

-Then opt(i) < opt(i + 1) is given. So monotonicity!!!
-How do we use this to prune our search?

A solution

int lo = 0; //lowest point that might be optimal
For 1 = 1 .. N DO

max[1] = find best in lo .. N

lo = lowest value that 1s maximum

//Does this work? Why or why not?

Attempt 2: Lets use D and C

void slv(int 1, int r, int olo, int ohi) |{

int mid = (1 + r) >> 1, opt = -1, Max[mid] = -INF;
for i in olo ... ohi DO
if Max[mid] < query(mid, 1) THEN
Max [mid] = answer to query
opt = 1
ENDIF
ENDFOR
if (1 == r)
return
ENDIF

slv(l, mid-1, olo, opt);
slv(mid+1, r, opt, r);‘

Correctness

* Is every potentially optimal location evaluated? (check tiebreaking)

* |s it fast?
* Hint: Yes, but we will prove it in a bit

D and Cdp

* Lets consider it visually: Different colours represent a different
recursion call (also different layers)

colours

* Recursion is log levels deep and at each level each row position is
evaluated once or twice so geometrically complexity is NlogN

How do we use this in other problems?

e See monotonicity? This
e Can use to optimise dp recursions (especially 2D dp)

* Might not want to prove the monotone property (its usually a pain)
but guessing + writing D and C doesn’t take much time (low risk)

* Mentality behind it (of avoiding doing necessary evaluations you
know will be suboptimal or degenerate) is often a key element to a
problem

Parallel binary search

* Interesting and very elegant technique coming in more useful than
you think making use of the previous diagram

* Basically run lots of binary searches at the same time
* Example problem: https://codeforces.com/contest/484/problem/E

* 5 minutes read and think

https://codeforces.com/contest/484/problem/E

What do we do?

* For a single query consider the following solution (bsearch):

 What if we can run binary searches for all queries at the same time
and avoid scanning the array multiple times?

Int lo = 0, hi = MAX
While lo + 1 != hi DO
mid = (lo + hi) / 2
check 1f there is a run of W fence posts
with height at least mid in [1,r] //O(N)
if so DO
lo = mid
else
hi = mid - 1
Answer 1o

Problem left as exercise

* Based on our discussion, try to write a D & C invariant that works
* The solution will be discussed afterwards
* Hint: Preorder traverse a segment tree!

Ssummary

* Things we looked at today:
-CDQ
-Divide and conquer DP
-D and C as traversing a segment tree
-applications to offline query problems
-parallel binary search: exercise, solution will be given later
-the power of invariants in designing these approaches
* Tackle problemset after working on this

Solving parallel bsearch

The ideas

e A useful approach in data structure problems is wishful thinking
-So what if we have a black box (BB) that can do:
-Given array, positions are on and off (BB.on(x))
-operations: turn position on and off (BB.off(x))
-query longest run of on positions in a range (BB.ask(l,r))
-in O(logN)
* We will solve this issue later

The D and C

[void slv(int lo, int hi, wvector <query> Q)

if 1 == r THEN
ANSWER THE QUERIES
return

ENDIF

int mid = (lo + hi) / Z2:

TURN on every cell with values in [lo, mid]
ENDFOR

vector <query> Ql, Qr;
FOREACH query in Q DO

if BB.ask(q.l, g.r) »= g.w THEN
place g in Qr:

else
place g in Q1;
ENDIF
ENDFOR
slv(mid+l, r, Qr);

TURN off every cell with values in [lo, mid]
slv(l, mid, Ql1):

Discussion

* Argue the correctness of the algorithm

* Argue that the algorithm runs in O(Nlog?N)

 What ideas of D and C we saw earlier are present in this solution?
-segment tree inorder traversal
-queries making their way down the call tree

* Exercise: find a way to implement black box Hint: Consider the
segment tree lecture in Data structures |

Problemset

Priority Problem

1 Counting Inversions (basic D and C) and
implementing the CF problem

2 Battleship Il: Electric boogaloo
3 mobile phone

4 Meteor

5 Arranging heaps

e Extension problem: 10l 2014 Holiday

Thank you for your attention!

* Further reading:
* Centroid decomp: divide and conquer on tree
* CP-algorithms: offline dynamic graph connectivity
* Codeforces pages
* D and C has numerous applications in interactives

