
Trees
Junhua Chen

Table of contents

• Euler tour and the preorder walk & Applications to data structures

• The virtual tree & properties of the LCA

• Small merge and trees

• Greedy algorithms on Tree

• DFS trees & Bridge Finding

• If time permits, path decomposition on tree

Basic definitions

• A tree is an acyclic connected graph: 𝑁 nodes and 𝑁 − 1 edges

• A rooted tree dictates that every node, except the root, have a parent

- It is common to have 𝑝𝑖 < 𝑖

- Often nice for dp problems

• Diameter is the longest path in tree

• Subtrees are defined for rooted trees

Problems I assume you know about

• Maximum independent set on tree (i.e any basic tree dp)

• Jim Thomas (i.e basic LCA)

Ordering a tree

• The tree is nice as you can order its nodes in a variety of ways

• Ordering is useful as more linear structures are better for things like
slapping segtrees and/or dp

Orderings we will look at:

• Euler tour

• Preorder

• Subtree

Euler tour

• Flatten the tree into a line

What the ET basically does

Why is this useful?

• Maps each subtree into a interval [l,r]

• So it maps the tree into a number line and nested intervalswhile
preserving some structure of the tree

• Motivating problem:
• Make data structure on tree supporting following operation:

• And x to the value of each node

• Query maximum node label in subtree

Euler tour and segment tree

The preorder sweep

• Order is also good for sweeping. Preorder sweeps are nice as they
eventually walk all the paths on a tree

• Consider the following problem:
• Given tree of 𝑁 ≤ 105 nodes and 𝑀 ≤ 105 paths, where each path has a

score. For each edge determine the maximum score path that uses the edge.

The How to: split the paths at LCA

Now that the paths are “nice”

• Pre-order walk:
• Entering the subtree of a node: Activate the paths that start at this node

• Leave the subtree of a node: Deactivate the paths starting at this node

To discuss activation/deactivation, we use our euler-tour segment tree from
before.

Activate: place the endpoint of path in the segment tree

Deactivate: remove the endpoint of path in segment tree

Query an edge: Use RMQ to determine which active endpoint in subtree is best

Example: Adding this edge

6 2 1 4 3 5 8 7 9

6 66

Score 6

Score
66

But the most important property of the tree
is …
• That it’s a tree

• The subtree structure of the tree allows all sorts of dps, and so
problems that are hard (NP-H) in general graph are doable in O(poly)
on trees e.g Max independent set

DP on tree + small merge

• So suppose you have a tree on 𝑁 ≤ 105 nodes, each node has a value
𝑊 𝑖 ≤ 𝑁. You wish to find a series of nodes 𝑣1…𝑣𝑘 such that:
• These nodes lie on one path

• 𝑊(𝑣𝑖) < 𝑊(𝑣𝑖+1)

• TLDR: Longest increasing subsequence on tree

Basic observations: Root tree arbitarily

• Consider the path 𝑣1 → 𝑣𝑘 of a valid subsequence

• The path goes up some LCA node 𝑢 then down again

-going up part: the deeper the node the less the label

-going down part: the deeper the node the greater the label

u

Iterate over all choices of u:

• Naïve solution 𝑑𝑝 𝑖 [𝑗]= “In the subtree of I, what is the best
‘upwards path’ that ends at node with value at most 𝑗”

• 𝑑𝑝 𝑖 [𝑗] = max
𝑘 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑖

𝑑𝑝 𝑘 [𝑗 − 1] + 1

• This is 𝑂 𝑁2 . Can we do better?

Revision: LIS in 1 dimension

//maintain set of changepoints c s.t dp[i][c] > dp[i][c-1]

Set S

Int A[N]

for i = 1 … N do

erase first value in S greater or equal to i, if any

insert I to S

Len(S) = answer

Q: Why does this work?

Maintain 𝑑𝑝 𝑖 [𝑗] in a set

• Rather than maintaining 𝑑𝑝 𝑖 [𝑗] explicitly we maintain a set 𝑑𝑝[𝑖] for
its changepoints 𝑗

• To combine children we small merge the sets of the children

• Q: How do we small merge?

e.g Merge changepoints [2,3,4] into [1,3,5] & amortise

• Complexity: 𝑂(𝑁𝑙𝑜𝑔2𝑁)

Summary

• When the state transitions are very simple, using data structures to
update many entries of the dp at once (in our case implicitly) + small
merge in tree dps can allow us to accelerate the dp while maintaining
effectively the same dimensionaity of the dp

• Same idea possible with many tree problems (Kevin would have
explained them)

LCA and virtual tree

Motivating problem:

Given tree on 𝑁 ≤ 105 nodes answer 𝑄 ≤ 105 queries of form:

query 𝑣1 …𝑣𝑛𝑖: what is the maximum distance between any
two nodes?

∑𝑛𝑖 ≤ 3 × 105

How to do it with just one query?

• Lets call an edge or node important if it lies on the path between any
two nodes that are given

• Consider all important nodes and edges, they form a subgraph of the
original tree, call it the “important forest/tree”

• Then just find diameter of this subgraph

Aside on terminology

• Subgraph of a graph is made by considering a subset of the nodes
and edges of a graph

• A vertex induced subgraph is a subgraph based on a set of nodes,
which contain all relevant edges

How can we speed things up

• Consider a query of 3 nodes

• Even though the number of nodes is “big” the structure is simple

• Seems sus

Lemma: The “important tree” of N nodes has
O(N) nodes with degree exceeding 2
• Proof: Let 𝑆 = {𝑙𝑐𝑎(𝑎, 𝑏)|𝑎, 𝑏 ∈ 𝑉} where V is the set of query nodes

• We show 𝑆 = 𝑂(𝑁) as S is the set of all deg > 2 nodes

• Claim: sort V by preorder index, then 𝑆 = {𝑙𝑐𝑎 𝑉𝑖 , 𝑉𝑖+1 , 1 ≤ 𝑖 < 𝑁}

• Proof: Suppose 𝑥 = 𝑙𝑐𝑎(𝑉𝑖 , 𝑉𝑗) and 𝑥 ≠ 𝑙𝑐𝑎 𝑉𝑘 , 𝑉𝑘+1 for some 𝑘.

Consider the euler tour ordering, and let 𝑙 be the first occurrence of 𝑉𝑖 and 𝑟
the last instance of 𝑉𝑗. Then 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑙≤𝑖≤𝑟{𝑑𝑒𝑝𝑡ℎ 𝑖 }

Consider an vertex i < 𝜆 < 𝑗. Then either 𝑥 = 𝑙𝑐𝑎(𝑉𝑖 , 𝑉𝜆) or 𝑥 = 𝑙𝑐𝑎 𝑉𝜆, 𝑉𝑗 .
But then we can basically “binary search” for 𝑘, contradiction

Great … we got a proof but how do we build?

• The critical nodes of the tree (with degree != 2) are kept in our
compressed “virtual tree”, while the rest with degree 2 are
compressed into paths

• The critical set 𝐶 = 𝑉 ∪ 𝑆

Then sweep by depth high to low

• Ha … another way to order the nodes (also can think of as BFS order)

• Use map to maintain current root nodes in euler tour position, then
at each node find the nodes in its subtree, mark them as children and
delete them from the map

• Then insert current node into map

• This builds tree in 𝑂(𝑁𝑙𝑜𝑔𝑁) which is good enough

Takeaways: Virtual Tree

• When it comes to studying lca structures, the euler tour is a great tool

• Dumb sqrt solution exists to this problem can you find it

• While this technique doesn’t appear that often, the ideas behind it
regarding LCA & its interplay with euler tour is why I chose to teach it

Greedy algorithms on tree

• Thinking about extremal properties of trees help

• Combinatorial thinking also pays off handsomely often

• Leaves

• Forced moves

• Oh, and solve a smaller problem: subtrees

Detailed study: Tokens (ACIO contest 2)

• https://acio-olympiad.github.io/2020/snap.pdf

• Few minutes to read (simple problem)

• Shameless ACIO plug

• We will look at tree version of the problem

• Vortex = Cycle with trees hanging off it = screw it (actually a lot of
graph types look like trees and much of the time reducing a problem
to trees is nice)

https://acio-olympiad.github.io/2020/snap.pdf

Basic Observations: Reducing tree structure

• Often a good bit of a tree in these problems is useless

• E.g a leaf node with nothing on it (why would you go there)

• Exterminate them

• Okay, so now every leaf has tokens on them

Forced moves: Moves that are evidently
optimal
• If leaf has tokens on them what can you do but move them upwards?

• Eliminate tokens if possible, then rinse and repeat from reducing part

Sure, we can implement this

• But this is messy

• Now think combinatorial

• Ask question: Under what circumstances is a token moved through
the edge; we no longer just think of trees as a graph

Answer

• Parity of number of tokens in a subtree

• Easy, O(N) solution

Summary of things we’ve done to solve

• Reduce the tree

• Forced Moves

• Think combinatorically

• Do it by subtree

Other things that are helpful

• Sorting (duh)

DFS trees (A brief look)

Def dfs(u):

vis[u] = true

for each u->v:

if vis[v]: pass //backedge

v.par = u

dfs(v)

Properties of dfs tree (undirected graph)

• Every edge is either an backedge (connects ancestor and descendent)
or an edge in the tree (proof: consider visiting order)

• Applications: There are very many, a notable one being bridge finding

• Definition: An edge in a graph is a bridge iff removing it increases the
number of connected components

How to find bridges

• An edge is a bridge iff no back-edge goes past it

• The algorithm’s correctness follows from backedges

Applications:

• Given graph direct its edges so that you can reach any node from any
other node or report impossible

• Find maximum independent set on graph of 𝑁 nodes and 𝑁 + 8
edges where 𝑁 ≤ 105

• This is just one of many possible applications of dfs trees (such as
SCC, articulation points)

Problems

Core

• COI2018 Paprike (oj.uz)

• CEOI 2019 Magic Tree (CF)

• Max Flow

• Amazon II

• Organisational Enlightenment

• ACIO Tokens

Optional

• Courier (very very very very very very hard)

• IOI2019 Practice contest Job (very hard)

• ACIO Vibe Check

• FARIO 2011 Virus (hard)

Bridge finding problems

• Network (2nd priority to core problems)

Oh … one more thing

• Decomposing Tree into paths is often useful for all of things

• HLD for data structures

• Proofy things

• Modules

• Pattern: assign edge to path based on some subtree condition

HLD

• Consider the tree model

• Let 𝑠𝑧(𝑥) be number of nodes in subtree of 𝑥

• Call an edge (𝑥, 𝑝𝑎𝑟 𝑥) heavy iff 𝑠𝑧 𝑥 >
𝑠𝑧 𝑝𝑎𝑟 𝑥

2
and light

otherwise

• In any path from 𝑥 to root of tree there are at most 𝑙𝑜𝑔𝑁 light edges
as subtree size doubles each light edge you take

• Decompose tree into heavy paths

Proof of DSU with path compression

• Time for a find query is proportional to #𝐻𝑒𝑎𝑣𝑦 𝑒𝑑𝑔𝑒𝑠 + 𝑙𝑜𝑔𝑁

• Each Union operation creates 1 heavy edge at most

• The heavy edges removed by path compression amortises out its cost
(at most 1 of resultant edges is heavy)

• Amortisation means paying for some operations in advance by
“charging” an “potential function” (you can see it as a debit card)

