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1 Summary: 

The aim is to develop a model to recommend problems to users of the ORAC informatics training 

site. In the current environment where data privacy is emphasised, we aim to devise an accurate 

recommender subject to an unavailability of user information. We choose models with relatively low 

computational requirements as well as reliance on advanced analysis of the problems being 

recommended.  Thus, the models produced can also be generalised to other unary (there is only 1 

type of interaction between user and item) recommendation problems too. 

2.1 Available information 

- 𝑁 anonymised users and 𝑃 problems and a binary matrix 𝑅 with 𝑅𝑖,𝑗 = 1 if and only if user i have 

solved problem j and 0 otherwise. 

- Basic information about the problems, namely its ID, which is in chronological order, and its 

problem class (see below). Problems not in one of these categories OR are sliding scale OR are not 

public are ignored. 

- A list of problems each user has solved since September 2020, up to 30 problems per person. We 

define these as “recent solves” 

Class Class name 

1 Starter problem 

2 AIO 

3 AIC 

4 AIIO 

5 FARIO 

2.2 Task and benchmark 

We aim to recommend problems to the user that he/she would have in natural circumstances been 

likely to solve next. We use metrics inspired by the clickthrough rate. For each person we collect is 

total solves. We then take a random set S of their recent solves where 

|𝑆| = min⁡(20, ⌈
#𝑇𝑜𝑡𝑎𝑙⁡𝑠𝑜𝑙𝑣𝑒𝑠

2
⌉ , #𝑅𝑒𝑐𝑒𝑛𝑡⁡𝑠𝑜𝑙𝑣𝑒𝑠)⁡ 

For convenience, if we ask our model to predict the top k most likely next solves for the ith person, 

denoted as the sets 𝑇𝑖(𝑘). We define 2 metrics of accuracy: 

Top-k-Accuracy: We define this metric as the value 

 ∑
|𝑆𝑖∩𝑇𝑖(𝑘)|

|𝑆𝑖|
⁡

𝑁

𝑖=1
 

Top-N+k-Accuracy: We define this metric as the value 

 ∑
|𝑆𝑖∩𝑇𝑖(|𝑆𝑖|+𝑘)|

|𝑆𝑖|
⁡

𝑁

𝑖=1
 

We consider 3 Values of Top-k-Accuracy; 5,10 and 20 and choose k=5 for Top-N+k. 



2.3 Collection of Data 

Data collection proceeded in 3 steps. The libraries BeautifulSoup was used to process HTML files 

whereas asyncio and aiohttp allowed asynchronous access of the numerous web pages required. 

1) The training hub home was scraped to read out a list of problems and the problem classes. 

Regrettably aiohttp malfunctioned on this page, cause unknown, and the page source had to 

be downloaded locally and read instead. 

2) The hall of fames for each problem were scraped to retrieve a list of people who solved each 

problem. Problems are stored by problem ID. 

3) Lorikeet, a backdoor admin interface were used to get a list of recent solves. The alternative 

would have been to use the Wayback machine if such interfaces were unavailable.  

 

2.4 Processing of Data 

Python was used to process the Data. Solver data was divided into 3 sets, a cross validation set and 

training set each containing half the people with recent solves, selected by random, and the Train 

set, containing every person and their public solves, with solves selected for inclusion in cv and test 

sets redacted. A summary of data is below: 

Number of People with at least 1 solve: 4377 

Number of problems: 208 

Number of total solutions: 48323 

Number of people with at least 1 recent solve: 522 

Number of recent solves (cap at 30/person):  2720 

Cross-Validation Set: 247 People with 892 Solves 

Test set:  275 cases with 947 Solves 

 

Evidently, our dataset is quite small. Further, it was pointed out that the data is relatively low rank, 

with strong correlations between solving various problems. The 0-1 nature of the data was also 

suggestive of probabilistic approaches. 

 



 

3.1 Baseline Models and rationale 

Two baseline models utilised, K-Nearest Neighbour and Naïve Bayes. 

3.1.1 Person based KNN: 

This is one of two standard collaborative filtering approaches. We consider the K most similar 

candidates to a particular candidate by hamming distance (in our 0-1 world Euclidean distance is sqrt 

of Hamming) then get them to vote on the most popular unsolved problems for a particular person. 

It is hoped that the KNN approach can capture both temporal and categorical factors (and hopefully 

others too) by considering other people who solved problems in similar time periods and categories 

without being explicitly told. The value of K will be tuned on the cross-validation set roughly. 

 

3.1.2 Item based approach (Naïve Bayes): 

A Pearson correlation based multilinear regression approach applied to the items being 

recommended is common. However, the unary structure of our problem makes Naïve Bayes 

(Laplace Smoothed) both faster to update and query as well as be more tailored to our structure (for 

instance being stronger in cold-start scenarios). It should also be able to capture aforementioned 

factors. This approach is also significantly faster than the previous one, and does not need 

hyperparameter tuning. 

3.2 The More complicated model 

We use matrix factorization based collaborative filtering (CF) with feature engineering as a more 

advanced model. Each user and problem will be assigned 𝐾 parameters representing latent features 

as vectors, denoted 𝑢1…𝑢𝑛 and 𝑝1…𝑝𝑛. 

Define 𝑈 = [𝑢1⁡|⁡𝑢2|… |𝑢𝑛] and 𝑃 similarly.  

(1) The base CF model generates a predictive matrix 𝑈𝑇𝑃 where higher values indicate higher 

likelihood to solve a problem.  

(2) Feature engineering: 

a. The problem category is encoded as a one-hot vector per problem 𝑐𝑖, and is merged 

into the matrix C as 𝐶 = [𝑐1|𝑐2| … |𝑐𝑃]. We define a person’s affinity for each 

category of problem to be a real number, and thus define a user’s category bias to 

be the vector 𝑏𝑖 = (𝑏𝑖𝑎𝑠⁡𝑓𝑜𝑟⁡𝑠𝑡𝑎𝑟𝑡𝑒𝑟, 𝑏𝑖𝑎𝑠⁡𝑓𝑜𝑟⁡𝑎𝑖𝑜 …𝑒𝑡𝑐). The matrix 𝐵 is defined 

similar to C and our new prediction is now 𝐵𝑇𝐶 + 𝑈𝑇𝑃. 

b. We encode the value of time per problem as the value 𝑡𝑖 =
𝑃𝑅𝑂𝐵𝐿𝐸𝑀_𝐼𝐷𝑖

𝑀𝐴𝑋_𝑃𝑅𝑂𝐵𝐿𝐸𝑀_𝐼𝐷
 to 

normalise. We add to user I’s prediction for problem j the time-bias value  

𝑓𝑖,𝑗 = ∑ 𝑎𝑖
(𝑘)
𝑡𝑗
𝑘𝐷𝑒𝑔

𝑘=0  (a polynomial of t), where Deg is a hyperparameter. In fashion 

similar to least squares linear regression, we express this as the product of 2 

matrices 𝐴𝑇𝑇. Thus our prediction becomes 𝐵𝑇𝐶 + 𝑈𝑇𝑃 + 𝐴𝑇𝑇 

We train by minimising 𝐸𝑟𝑟𝑜𝑟(𝑅, 𝜎(𝑈𝑇𝑃 + 𝐵𝑇𝐶 + 𝐴𝑇𝑇)) where 𝜎(𝑥) =
1

𝑒−𝑥+1
 is the logistic sigmoid 

(used to get values into [0,1]). Due to the potentially probabilistic structure of the problem, we 

choose logistic loss for our error function. Further, we will regularize the parameters in 𝑈, 𝑃, 𝐵, 𝐴. 

The extent of the regularization, along with K and Deg are hyperparameters to be tuned. 



3.3 Training and results 

The baseline models were implemented with ease. The only thing worthy of note is the 

hyperparameter of KNN, which is found to be optimal around 500-1000 round (750 was settled on). 

The matrix model was trained using pytorch’s autograd using an AdamW optimizer and a learning 

rate of 0.05, running for 260 iterations. Various choices of hyperparameters were tried including: 

- 𝐷𝑒𝑔 = 1,2 

- 𝑊𝑒𝑖𝑔ℎ𝑡⁡𝐷𝑒𝑐𝑎𝑦⁡(𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛) = 0.01 × 3𝑘 , 𝑘 = 0,1…4 

- 𝐾 = 2,3… ,7 

In the end it was found that for the matrix model on cross validation set 𝐷𝑒𝑔 = 1,𝐷𝑒𝑐𝑎𝑦 =

0.71,𝐾 = 7 performed best when all feature engineering was applied. Numpy.random was seeded 

with 42069 for this experiment. 

Results on test set: 

Model Top-5 Accuracy Top-10 Accuracy Top-20 Accuracy Top-S+5 Accuracy 

750-NN 39.7% 49.3% 62.4% 55.0% 

Naïve Bayes 38.9% 47.0% 57.9% 52.0% 

Un-engineered 
Matrix 

<20% <20% <20% <20% 

Matrix with 
Categories data 

35.6%  42.6% 50.2% 52.0% 

Matrix with 
Categories and 
time data 

40.0% 47.8% 53.7% 55.6% 

Surprisingly, 750-NN does the best in Top 10 and Top 20 accuracy, while the Matrix model, barring 

the fully fledged variant, is generally inferior. However, in the category that arguably matter most for 

applications (Top-5 and Top-S+5), the fully engineered matrix performs best. It should be noted that 

all 3 models have comparable performances in every category.  

3.4 Practical considerations 

When applying the model, scalability is an issue. While orac has a small dataset allowing successful 

application of the 750-NN model, its time complexity is problematic for bigger applications. Note 

that when comparing models we assume 𝑁 is much greater than 𝑃, and that we can update the 

model periodically rather than every time a user makes an action. 

Model  Update Complexity 
(less important) 

Query complexity (more 
important) 

Amount of 
persisted data 

K-NN 𝑂(1) 𝑂(𝑁𝑃) Optimisable by 
vector operations e.g 
bitset for a factor of 32 

𝑂(1) 

Naïve-Bayes 𝑂(𝑃) 𝑂(𝑃2) 𝑂(𝑃2) 
Matrix 𝑂(𝑁𝑃 ∗ #𝑖𝑡𝑠) (fast in 

practice) 
O(P) 𝑂(𝑁 + 𝑃) (low 

constant) 

Thus, for large / high traffic applications, K-NN is slower (in lieu of advanced data structures). 

Further, the matrix model is most versatile, memory friendly and allows known data to be 

engineered in with relative ease as in our case. Therefore, Matrix is by no means suboptimal. 

 



4 Thanks 

Thanks to Jerry for checking my approach and Quang for introducing me to web scraping. 

5 Appendix 

All code used to produce the results can be found in https://github.com/anonymous3141/Orac-

Recommendation-Sytem with the code in each folder doing what is expected of it by the title. 

However, some potentially sensitive data has been removed in the Data-Collection folder as they 

contain raw scraped materials.  

Data Collection: All code in this folder scrapes data from Orac & the backdoor lorikeet. People can 

adapt the infrastructure as needed for their own scraping.  

Data Processing: The sole python file takes rough data from scraping and produces the files which 

are now usable by the machine learning model as train/cross validation/test data. It also computes 

and plots basic aggregates of the data. 

Models: recommender.py contains a recommender base class which contains basic code to read in 

training data, which is used by all models. The evaluate() function is used to benchmark the accuracy 

of model. In all 3 models KNN.py, Matrix_Factorization.py and Naïve_bayes.py the base class is 

inherited and the predict() and init() function overridden with aforementioned implementations. 

Sometimes other code is added to get accuracy and/or tune hyperparameters. If you wish to use the 

implementations, the files can be moved over as is and necessary IO code added. 

Library dependencies (all installable via pip/available by default): 

Web scraping Data analysis & processing 

aiohttp numpy 

beautifulsoup pandas 

asyncio pytorch 

 matplotlib 

 

 

https://github.com/anonymous3141/Orac-Recommendation-Sytem
https://github.com/anonymous3141/Orac-Recommendation-Sytem

